حل عددی مسائل کنترل بهینه با استفاده از چندجمله ای متعامد چبیشف
thesis
- وزارت علوم، تحقیقات و فناوری - دانشگاه الزهراء - دانشکده علوم پایه
- author رقیه هوشنگ
- adviser مرضیه اسکندری یدالله اردوخانی محسن شاه رضایی
- publication year 1392
abstract
در این پایان نامه الگوریتم های جدید و کارا برای حل مسائل بهینه و نوسان ساز دافینگ کنترل شده ارائه شده است در ابتدا متغیر وضعیت به صورت ترکیب خطی از چند جمله ای های چبیشف نوع اول با ظرایب مجهول در نظر گرفته می شود سپس مسئله کنترل بهینه در فضای (n+1) بعدی را به یک مساله کنترل بهینه یک بعدی تبدیل می کنیم . الگوریتم های به کا رفته، متغیرهای کنترل و وضعیت را به صورت تابعی از زمان تخمین می زنند،همگرایی الگوریتم هاثابت شده و مثال هایی برای نشان دادن کارایی و قابلیت روش ارائه می شود.سپس این الگوریتم ها برای چندجمله ای های چبیشف نوع دوم و لژاندار تعمیم داده شده اند
similar resources
روش عددی برای حل یک کلاس از مساله کنترل بهینه کسری دوبعدی با کمک ماتریس های عملیاتی چندجمله ای لژاندر
در این مقاله یک روش برای حل یک کلاس از مساله کنترل بهینه کسری دوبعدی با استفاده از ماتریس های عملیاتی چندجملهای لژاندر ارائه میدهیم. لازم به ذکر است که دستگاه دینامیکی مساله براساس مشتق کسری کاپوتوی دوبعدی می باشد. در روش مورد نظر، انتگرال دوگانه توسط قاعده گاوس-لژاندر دوبعدی تقریب زده می شود و سپس با کمک معادله لاگرانژین یک دستگاه معادلات غیرخطی بدست می آید. این دستگاه معادلات غیرخطی ب...
full textحل عددی مسایل کنترل بهینه با استفاده از چندجمله ای های متعامد لژاندر و چبی شف
حل سیستم های کنترل بهینه ی واقعی از پیچیدگی های خاصی برخوردار است. در نظریه ی کلاسیک کنترل، تنها سیگنال های ورودی-خروجی اهمیت دارند. نقص عمده ی این نظریه آن است که تنها در مورد سیستم های خطی مستقل از زمان قابل استفاده است. از این رو ارائه ی یک روش عددی مناسب و کارآمد برای حل سیستم های کنترل بهینه واقعی از اهمیت قابل توجهی برخوردار می باشد. در این پایان نامه ابتدا به معرفی چند جمله ای های م...
15 صفحه اولحل مسائل کنترل بهینه کسری با استفاده از توابع متعامد
در سال های اخیر توابع و چندجمله ای های متعامد در حل مسائل مختلف از جمله کنترل بهینه، کنترل بهینه کسری، تجزیه و تحلیل سیستم ها، ... مورد توجه و استفاده قرار گرفته اند. هدف استفاده از این توابع و چندجمله-ای ها، تبدیل دینامیک سیستم ها ی مختلف به معادلات جبری می باشد. در این تحقیق یک روش عددی برای حل یک کلاس از مسائل کنترل بهینه کسری ارائه شده است. در این مسائل، مشتقات کسری در مفهوم مشتقات کاپوتو ...
حل عددی معادلات انتگرال با استفاده از چندجمله ایهای متعامد
در این پایان نامه با استفاده از روش گالرکین بر اساس چند جمله ایهای متعامد به حل عددی انواع معادلات انتگرال، معادله انتگرال- دیفرانسیل جمعیت و معادله دیفرانسیل با شرایط اولیه پرداخته می شود. در ادامه این پایان نامه ماتریسهای عملیاتی برای چند جمله ایهای متعامد لژاندر و چبیشف ساخته می شوند. در این روش با تقریب توابع بر حسب چند جمله ایهای متعامد انواع این مسائل را به یک سری معادلات جبری خطی تبدیل م...
15 صفحه اولاستفاده از چندجمله ای های تقریب ساز در حل مسائل کنترل بهینه با تاخیر زمانی
?تاخیر زمانی در سیستم های فیزیکی، مهندسی، شیمیایی و بیولوژیکی، همانند کنترل فرایندهای شیمیایی، موتورهای احتراق، مدل های کنترل جمعیت، کنترل شبکه های مخابراتی، شبکه های اینترنت، سیستم های حاصل از مدل بندی فرایندهای بیولوژیکی و... وجود دارند. این تاخیر در سیستم های کنترل اشاره شده ممکن است در متغیرهای وضعیت و یا کنترل باشد. حل مسائل کنترل تاخیری و نیز مسائل کنترل بهینه تاخیری، همواره مورد توجه بود...
حل عددی معادلات انتگرال و انتگرال-دیفرانسیل با استفاده از چندجمله ای های لژاندر و چبیشف
برای حل معادلات انتگرال پریشنده منفرد و معادلات انتگرال-دیفرانسیل ولترا مرتبه اول و معادلات انتگرال-دیفرانسیل تأخیری ولترا، از روش بسط متناهی لژاندر و برای حل معادلات انتگرال ولترا با هسته های لگاریتمی از بسط متناهی چبیشف استفاده می کنیم و به تحلیل خطا و بعد از آن به بررسی مقایسه بین نتایج به دست آمده با دیگر روش ها می پردازیم.
15 صفحه اولMy Resources
document type: thesis
وزارت علوم، تحقیقات و فناوری - دانشگاه الزهراء - دانشکده علوم پایه
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023